The Relationship between Adaptive Strategy Selection and Cognitive Effort: An Eye-tracking Study

Dominik Lenda, Jakub Traczyk

Streszczenie


We investigated whether people make choices and regulate cognitive effort adaptively depending on the task structure. We employed an eye-tracking methodology to examine whether measures of cognitive effort (i.e., reaction times and pupil size) predict choices in high and low expected values ratio choice problems. We measured how frequently participants made choices consistent with predictions of cumulative prospect theory vs. priority heuristic models. Participants were more likely to make choices predicted by cumulative prospect theory in choice problems with high expected value ratio, while in choices of low expected value ratio problems, they tended to select an alternative predicted by priority heuristic. Choice latency but not pupil size was directly related to choices contingent upon cumulative prospect theory. Notably, we observed that the likelihood of choices consistent with priority heuristic decreased with pupil size, but only in case of choice problems with low expected value ratio.


Słowa kluczowe


adaptive strategy selection, risky choice, eye-tracking, pupil size, cognitive effort

Pełny tekst

PDF (English)

Literatura


Ashby, N. J. S. (2017). Numeracy Predicts Preference Consistency: Deliberative Search Heuristics Increase Choice Consistency for Choices from Description and Experience. Judgement and Decision Making, 12(2), 128–139.

Barr, D. J. (2008). Memory and Language Analyzing ‘Visual World’ Eyetracking Data Using Multilevel Logistic Regression. Journal of Memory and Language, 59(4), 457–474. https://doi.org/10.1016/j.jml.2007.09.002.

Bernoulli, D. (1954). Exposition of a New Theory on the Measurement of Risk. Econometrica, 22(1), 23. https://doi.org/10.2307/1909829.

Bradley, M. M., Miccoli, L., Escrig, M. A., Lang, P. J. (2008). The Pupil as a Measure of Emotional Arousal and Autonomic Activation. Psychophysiology, 45(4), 602–607. https://doi.org/10.1111/j.1469-8986.2008.00654.x.

Brandstätter, E., Gigerenzer, G., Hertwig, R. (2006). The Priority Heuristic: Making Choices without Trade-offs. Psychological Review, 113(2), 409–432. https://doi.org/10.1037/0033-295X.113.2.409.

Cavanagh, J. F., Wiecki, T. V., Kochar, A., Frank, M. J. (2014). Eye Tracking and Pupillometry Are Indicators of Dissociable Latent Decision Processes. Journal of Experimental Psychology. General, 143(4), 1476-1488. https://doi.org/10.1037/a0035813.

Cokely, E. T., Feltz, A., Ghazal, S., Allan, J. N., Petrova, D. G., Garcia-Retamero, R. (2018). Decision Making Skill: From Intelligence to Numeracy and Expertise. In K. A. Ericsson, R. R. Hoffman, A. Kozbelt, A. M. Williams (eds), The Cambridge Handbook of Expertise and Expert Performance (2nd ed., pp. 476–505). New York, NY: Cambridge University Press.

Cokely, E. T., Galesic, M., Schulz, E., Ghazal, S., Garcia-Retamero, R. (2012). Measuring Risk Literacy: The Berlin Numeracy Test. Judgment and Decision Making, 7(1), 25–47.

Fiedler, S., Glöckner, A. (2012). The Dynamics of Decision Making in Risky Choice: An Eye-tracking Analysis. Frontiers in Psychology, 3, 1–18. https://doi.org/10.3389/fpsyg.2012.00335.

Garcia-Retamero, R., Sobkow, A., Petrova, D., Garrido, D., Traczyk, J. (2019). Numeracy and Risk Literacy: What Have We Learned So Far? The Spanish Journal of Psychology, 22(E10), 1–11. https://doi.org/10.1017/sjp.2019.16.

Gelman, A. (2008). Scaling Regression Inputs by Dividing by Two Standard Deviations. Statistics in Medicine, 27(15), 2865–2873. https://doi.org/10.1002/sim.

Gelman, A., Lee, D., Guo, J. (2015). Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization. Journal of Educational and Behavioral Statistics, 40(5), 530–543.

Ghazal, S., Cokely, E. T., Garcia-Retamero, R. (2014). Predicting Biases in Very Highly Educated Samples: Numeracy and Metacognition. Judgment and Decision Making, 9(1), 15–34.

Gigerenzer, G., Goldstein, D. G. (1996). Reasoning the Fast and Frugal Way: Models of Bounded Rationality. Psychological Review, 103(4), 650–669. Retrieved from http://psycnet.apa.org/journals/rev/103/4/650.html.

Gigerenzer, G., Todd, P. M., ABC Research Group. (1999). Simple Heuristics that Make Us Smart. New York: Oxford University Press.

Glöckner, A., Fiedler, S., Hochman, G., Ayal, S., Hilbig, B. E. (2012). Processing Differences between Descriptions and Experience: A Comparative Analysis Using Eye-tracking and Physiological Measures. Frontiers in Psychology, 3(JUN), 1–15. https://doi.org/10.3389/fpsyg.2012.00173.

Hochman, G., Yechiam, E. (2011). Loss Aversion in the Eye and in the Heart: The Autonomic Nervous System’s Response to Losses. Journal of Behavioral Decision Making, 24, 140–156. https://doi.org/10.1002/bdm.692.

Jasper, J. D., Bhattacharya, C., Levin, I. P., Jones, L., Bossard, E. (2013). Numeracy as a Predictor of Adaptive Risky Decision Making. Journal of Behavioral Decision Making, 26(2), 164–173. https://doi.org/10.1002/bdm.1748.

Kahneman, D., Beatty, J. (1966). Pupil Diameter and Load on Memory. Science, 154(3756), 1583–1585. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5924930.

Lakens, D. (2013). Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863.

Mathôt, S., Fabius, J., van Heusden, E., Van der Stigchel, S. (2018). Safe and Sensible Preprocessing and Baseline Correction of Pupil-size Data. Behavior Research Methods, 50(1), 94–106.

Mathôt, S., Van der Stigchel, S. (2015). New Light on the Mind’s Eye: The Pupillary Light Response as Active Vision. Current Directions in Psychological Science, 24(5), 374–378. https://doi.org/10.1177/0963721415593725.

Pachur, T., Hertwig, R., Gigerenzer, G., Brandstätter, E. (2013). Testing Process Predictions of Models of Risky Choice: A Quantitative Model Comparison Approach. Frontiers in Psychology, 4, 1–22. https://doi.org/10.3389/fpsyg.2013.00646.

Payne, J. W., Bettman, J. R. (2004). Walking with the Scarecrow: The Information Processing Approach to Decision Research. In N. Harvey, D. Koehler (eds), The Blackwell Handbook of Judgment and Decision Making (pp. 110–132). Oxford: Oxford University Press.

Payne, J. W., Bettman, J. R., Johnson, E. J. (1988). Adaptive Strategy Selection in Decision Making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(3), 534. http://dx.doi.org/10.1037/0278-7393.14.3.534.

Payne, J. W., Bettman, J. R., Johnson, E. J. (1993). The Adaptive Decision Maker. Cambridge: Cambridge University Press.

Peters, E., Bjalkebring, P. (2014). Multiple Numeric Competencies: When a Number Is Not Just a Number. Journal of Personality and Social Psychology, (Advance online publication). https://doi.org/http://dx.doi.org/10.1037/pspp0000019.

Petrova, D., Garcia-Retamero, R., Catena, A., van der Pligt, J. (2016). To Screen or Not to Screen: What Factors Influence Complex Screening Decisions? Journal of Experimental Psychology: Applied, 22(2), 247–260. https://doi.org/10.1037/xap0000086.

Petrova, D., Traczyk, J., Garcia-Retamero, R. (2019). What Shapes the Probability Weighting Function? Influence of Affect, Numeric Competencies, and Information Formats. Journal of Behavioral Decision Making, 32(2), 124–139. https://doi.org/10.1002/bdm.2100.

Rubaltelli, E., Dickert, S., Slovic, P. (2012). Response Mode, Compatibility, and Dual-processes in the Evaluation of Simple Gambles: An Eye-tracking Investigation. Judgment, Decision Making, 7(4), 427–440.

Salthouse, T. A., Ellis, C. L., Diener, D. C., Somberg, B. L. (1981). Stimulus Processing during Eye Fixations. Journal of Experimental Psychology: Human Perception and Performance, 7(3), 611–623.

Simon, H. A. (1955). A Behavioral Model of Rational Choice. The Quarterly Journal of Economics, 69(1), 99. https://doi.org/10.2307/1884852.

Simon, H. A. (1990). Invariants of Human Behavior. Annual Review of Psychology, 41(1), 1–20. https://doi.org/10.1146/annurev.ps.41.020190.000245.

Stan Development Team (2016). Rstanarm: Bayesian Applied Regression Modeling via Stan. R package version 2.13.1. http://mc-stan.org/.

Starmer, C. (2000). Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk. Journal of Economic Literature, 38(2), 332–382. Retrieved from http://www.jstor.org/stable/2565292.

Traczyk, J., Lenda, D., Serek, J., Fulawka, K., Tomczak, P., Strizyk, K., Polec, A., Zjawiony, P., Sobkow, A. (2018). Does Fear Increase Search Effort in More Numerate People? An Experimental Study Investigating Information Acquisition in a Decision from Experience Task. Frontiers in Psychology, 9(1203). https://doi.org/10.3389/fpsyg.2018.01203.

Traczyk, J., Sobkow, A., Fulawka, K., Kus, J., Petrova, D., Garcia-Retamero, R. (2018). Numerate Decision Makers Don’t Use More Effortful Strategies Unless It Pays: A Process Tracing Investigation of Skilled and Adaptive Strategy Selection in Risky Decision Making. Judgment and Decision Making, 13(4), 372–381.

Traczyk, J., Sobkow, A., Matukiewicz, A., Petrova, D. G., Garcia-Retamero, R. (2020). The Experience-based Format of Probability Improves Probability Estimates: The Moderating Role of Individual Differences in Numeracy. International Journal of Psychology, 55(2), 273–281. https://doi.org/10.1002/ijop.12566.

Tversky, A., Kahneman, D. (1992). Advances in Prospect Theory: Cumulative Representation of Uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323. https://doi.org/10.1007/BF00122574.

Wang, J. T. (2011). Pupil Dilation and Eye-tracking. In M. Schulte-Mecklenbeck, A. Kuhberger, R. Ranyard (eds), Handbook of Process Tracing Methods for Decision Research. A Critical Review and User’s Guide (pp. 185–2014). New York: Psychology Press. Taylor, Francis Group.




DOI: https://doi.org/10.15678/PJOEP.2018.13.03

Odniesienia

  • Obecnie nie ma odniesień.